The Chemical Evolution of the La0.6Sr0.4CoO3−Δ Surface Under SOFC Operating Conditions and Its Implications for Electrochemical Oxygen Exchange Activity
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Standard
in: Topics in catalysis, Jahrgang 61.2018, Nr. 20, 01.12.2018, S. 2129-2141.
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - The Chemical Evolution of the La0.6Sr0.4CoO3−Δ Surface Under SOFC Operating Conditions and Its Implications for Electrochemical Oxygen Exchange Activity
AU - Opitz, Alexander Karl
AU - Rameshan, Christoph
AU - Kubicek, Markus
AU - Rupp, Ghislain M.
AU - Nenning, Andreas
AU - Götsch, Thomas
AU - Blume, Raoul
AU - Hävecker, Michael
AU - Knop-Gericke, Axel
AU - Rupprechter, Günther
AU - Klötzer, Bernhard
AU - Fleig, Jürgen
N1 - Publisher Copyright: © 2018, The Author(s).
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Owing to its extraordinary high activity for catalysing the oxygen exchange reaction, strontium doped LaCoO3 (LSC) is one of the most promising materials for solid oxide fuel cell (SOFC) cathodes. However, under SOFC operating conditions this material suffers from performance degradation. This loss of electrochemical activity has been extensively studied in the past and an accumulation of strontium at the LSC surface has been shown to be responsible for most of the degradation effects. The present study sheds further light onto LSC surface changes also occurring under SOFC operating conditions. In-situ near ambient pressure X-ray photoelectron spectroscopy measurements were conducted at temperatures between 400 and 790 °C. Simultaneously, electrochemical impedance measurements were performed to characterise the catalytic activity of the LSC electrode surface for O2 reduction. This combination allowed a correlation of the loss in electro-catalytic activity with the appearance of an additional La-containing Sr-oxide species at the LSC surface. This additional Sr-oxide species preferentially covers electrochemically active Co sites at the surface, and thus very effectively decreases the oxygen exchange performance of LSC. Formation of precipitates, in contrast, was found to play a less important role for the electrochemical degradation of LSC.
AB - Owing to its extraordinary high activity for catalysing the oxygen exchange reaction, strontium doped LaCoO3 (LSC) is one of the most promising materials for solid oxide fuel cell (SOFC) cathodes. However, under SOFC operating conditions this material suffers from performance degradation. This loss of electrochemical activity has been extensively studied in the past and an accumulation of strontium at the LSC surface has been shown to be responsible for most of the degradation effects. The present study sheds further light onto LSC surface changes also occurring under SOFC operating conditions. In-situ near ambient pressure X-ray photoelectron spectroscopy measurements were conducted at temperatures between 400 and 790 °C. Simultaneously, electrochemical impedance measurements were performed to characterise the catalytic activity of the LSC electrode surface for O2 reduction. This combination allowed a correlation of the loss in electro-catalytic activity with the appearance of an additional La-containing Sr-oxide species at the LSC surface. This additional Sr-oxide species preferentially covers electrochemically active Co sites at the surface, and thus very effectively decreases the oxygen exchange performance of LSC. Formation of precipitates, in contrast, was found to play a less important role for the electrochemical degradation of LSC.
KW - Impedance spectroscopy
KW - NAP-XPS
KW - Oxygen reduction
KW - Perovskite-type electrode
KW - SOFC cathode
KW - Strontium segregation
UR - http://www.scopus.com/inward/record.url?scp=85055680288&partnerID=8YFLogxK
U2 - 10.1007/s11244-018-1068-1
DO - 10.1007/s11244-018-1068-1
M3 - Article
AN - SCOPUS:85055680288
VL - 61.2018
SP - 2129
EP - 2141
JO - Topics in catalysis
JF - Topics in catalysis
SN - 1022-5528
IS - 20
ER -