The Chemical Evolution of the La0.6Sr0.4CoO3−Δ Surface Under SOFC Operating Conditions and Its Implications for Electrochemical Oxygen Exchange Activity

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Autoren

  • Alexander Karl Opitz
  • Markus Kubicek
  • Ghislain M. Rupp
  • Andreas Nenning
  • Thomas Götsch
  • Raoul Blume
  • Michael Hävecker
  • Axel Knop-Gericke
  • Günther Rupprechter
  • Bernhard Klötzer
  • Jürgen Fleig

Externe Organisationseinheiten

  • Technische Universität Wien
  • Universität Innsbruck
  • Fritz Haber Institute of the Max Planck Society, Berlin
  • Max-Planck-Institute for Chemical Energy Conversion, Mülheim

Abstract

Owing to its extraordinary high activity for catalysing the oxygen exchange reaction, strontium doped LaCoO3 (LSC) is one of the most promising materials for solid oxide fuel cell (SOFC) cathodes. However, under SOFC operating conditions this material suffers from performance degradation. This loss of electrochemical activity has been extensively studied in the past and an accumulation of strontium at the LSC surface has been shown to be responsible for most of the degradation effects. The present study sheds further light onto LSC surface changes also occurring under SOFC operating conditions. In-situ near ambient pressure X-ray photoelectron spectroscopy measurements were conducted at temperatures between 400 and 790 °C. Simultaneously, electrochemical impedance measurements were performed to characterise the catalytic activity of the LSC electrode surface for O2 reduction. This combination allowed a correlation of the loss in electro-catalytic activity with the appearance of an additional La-containing Sr-oxide species at the LSC surface. This additional Sr-oxide species preferentially covers electrochemically active Co sites at the surface, and thus very effectively decreases the oxygen exchange performance of LSC. Formation of precipitates, in contrast, was found to play a less important role for the electrochemical degradation of LSC.

Details

OriginalspracheEnglisch
Seiten (von - bis)2129-2141
Seitenumfang13
FachzeitschriftTopics in catalysis
Jahrgang61.2018
Ausgabenummer20
Frühes Online-Datum20 Okt. 2018
DOIs
StatusVeröffentlicht - 1 Dez. 2018
Extern publiziertJa