Tensile Properties of Al-12Si Fabricated via Selective Laser Melting (SLM) at Different Temperatures
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Standard
in: Technologies, Jahrgang 4.2016, Nr. 4, 38, 02.12.2016.
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Tensile Properties of Al-12Si Fabricated via Selective Laser Melting (SLM) at Different Temperatures
AU - Prashanth, Konda Gokuldoss
AU - Scudino, Sergio
AU - Eckert, Jürgen
PY - 2016/12/2
Y1 - 2016/12/2
N2 - Additive manufacturing processes such as selective laser melting (SLM) are attracting increasing attention and are regarded as the manufacturing technology of the future, because of their ability to produce near net shaped components of theoretically any shape with added functionality. Various properties, including mechanical, tribological, welding, and corrosion properties, of Al-12Si alloys fabricated via SLM have been extensively studied. However, all of these studies were carried out at ambient conditions. Nevertheless, under working conditions, these alloys experience service temperatures ranging between 373 and 473 K. The present study focuses on the evaluation of the mechanical properties of SLM-fabricated Al-12Si alloys in this temperature range. For this, Al-12Si alloy specimens were annealed at 573 K, a temperature well beyond the test temperature in order to provide a stable microstructure during tensile testing. The plasticity of these materials increases along with the size of the dimples on the fracture surface with increasing tensile test temperature. Moreover, the annealed Al-12Si alloy exhibits appreciable tensile properties when tested between 373 K and 473 K. The results suggest that Al-12Si samples fabricated via SLM may be ideal candidates for automotive applications such as pistons and cylinder heads.
AB - Additive manufacturing processes such as selective laser melting (SLM) are attracting increasing attention and are regarded as the manufacturing technology of the future, because of their ability to produce near net shaped components of theoretically any shape with added functionality. Various properties, including mechanical, tribological, welding, and corrosion properties, of Al-12Si alloys fabricated via SLM have been extensively studied. However, all of these studies were carried out at ambient conditions. Nevertheless, under working conditions, these alloys experience service temperatures ranging between 373 and 473 K. The present study focuses on the evaluation of the mechanical properties of SLM-fabricated Al-12Si alloys in this temperature range. For this, Al-12Si alloy specimens were annealed at 573 K, a temperature well beyond the test temperature in order to provide a stable microstructure during tensile testing. The plasticity of these materials increases along with the size of the dimples on the fracture surface with increasing tensile test temperature. Moreover, the annealed Al-12Si alloy exhibits appreciable tensile properties when tested between 373 K and 473 K. The results suggest that Al-12Si samples fabricated via SLM may be ideal candidates for automotive applications such as pistons and cylinder heads.
U2 - 10.3390/technologies4040038
DO - 10.3390/technologies4040038
M3 - Article
VL - 4.2016
JO - Technologies
JF - Technologies
SN - 2227-7080
IS - 4
M1 - 38
ER -