Microstructural, chemical, and crystallographic investigations of dynamic strain‐induced ferrite in a microalloyed QT steel
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Standard
in: Materials, Jahrgang 12.2022, Nr. 2, 313, 10.02.2022.
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Microstructural, chemical, and crystallographic investigations of dynamic strain‐induced ferrite in a microalloyed QT steel
AU - Monschein, Stefan
AU - Ragger, Katharina
AU - Fasching, Josef
AU - Zügner, Dominik
AU - Schnitzer, Ronald
PY - 2022/2/10
Y1 - 2022/2/10
N2 - Dynamic strain-induced transformation (DSIT) enables the formation of fine-grained ferritic microstructures, which are well suited for cold forming processes in the as-rolled condition. In this work, the formation mechanism, chemical composition, and crystallographic orientation of DSIT ferrite were investigated in a micro-alloyed steel and compared to pre-eutectoid ferrite. High-resolution techniques, such as scanning transmission electron microscopy and atom probe tomography (APT), were used for the investigations. To generate DSIT ferrite and pre-eutectoid ferrite, different experimental routes were applied using a compression deformation dilatometer. The results show a large number of NbC precipitates within DSIT ferrite, and show that the formation of DSIT ferrite is accompanied with C diffusion and the formation of retained austenite. APT measurements revealed that the C- and Mn concentration in DSIT ferrite is higher compared to pre-eutectoid ferrite. The crystallographic orientation of DSIT ferrite was examined using electron backscatter diffraction. The crystallographic orientation of DSIT ferrite after the deformation route revealed that the <111> plane normals are parallel to the compression direction with the <110> directions pointing towards the radial direction of the compressed sample. The results suggest that the formation of DSIT ferrite is a displacive mechanism, accompanied by C diffusion.
AB - Dynamic strain-induced transformation (DSIT) enables the formation of fine-grained ferritic microstructures, which are well suited for cold forming processes in the as-rolled condition. In this work, the formation mechanism, chemical composition, and crystallographic orientation of DSIT ferrite were investigated in a micro-alloyed steel and compared to pre-eutectoid ferrite. High-resolution techniques, such as scanning transmission electron microscopy and atom probe tomography (APT), were used for the investigations. To generate DSIT ferrite and pre-eutectoid ferrite, different experimental routes were applied using a compression deformation dilatometer. The results show a large number of NbC precipitates within DSIT ferrite, and show that the formation of DSIT ferrite is accompanied with C diffusion and the formation of retained austenite. APT measurements revealed that the C- and Mn concentration in DSIT ferrite is higher compared to pre-eutectoid ferrite. The crystallographic orientation of DSIT ferrite was examined using electron backscatter diffraction. The crystallographic orientation of DSIT ferrite after the deformation route revealed that the <111> plane normals are parallel to the compression direction with the <110> directions pointing towards the radial direction of the compressed sample. The results suggest that the formation of DSIT ferrite is a displacive mechanism, accompanied by C diffusion.
U2 - 10.3390/met12020313
DO - 10.3390/met12020313
M3 - Article
VL - 12.2022
JO - Materials
JF - Materials
SN - 1996-1944
IS - 2
M1 - 313
ER -