Large deviations for stochastic 2D Navier-Stokes equations on time-dependent domains
Publikationen: Konferenzbeitrag › Poster › Forschung › (peer-reviewed)
Standard
2022. 3479 Postersitzung präsentiert bei Gradient Flows, Large Deviation Theory, and Macroscopic Fluctuation Theory, Bielefeld, Deutschland.
Publikationen: Konferenzbeitrag › Poster › Forschung › (peer-reviewed)
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - CONF
T1 - Large deviations for stochastic 2D Navier-Stokes equations on time-dependent domains
AU - Wang, Wei
AU - Zhai, Jianliang
AU - Zhang, Tusheng
N1 - Wang hat das Poster gemacht. Dieses wurde präsentiert. Das Paper auf welchem das Poster gründet, ist nicht öffentlich zugänglich.
PY - 2022/10/15
Y1 - 2022/10/15
N2 - A Freidlin-Wentzell-type large deviation principle is established for 2D stochastic Navier-Stokes equations on time-dependent domains driven by Brownian motion, which captures situations where the regions of the fluid change with time.
AB - A Freidlin-Wentzell-type large deviation principle is established for 2D stochastic Navier-Stokes equations on time-dependent domains driven by Brownian motion, which captures situations where the regions of the fluid change with time.
KW - Navier-Stokes equations
KW - Girsanov theorem
UR - https://www.aimsciences.org/article/doi/10.3934/cpaa.2022111
M3 - Poster
SP - 3479
T2 - Gradient Flows, Large Deviation Theory, and Macroscopic Fluctuation Theory
Y2 - 17 June 2024 through 21 June 2024
ER -