Investigation of Potential Recovery Rates of Nickel, Manganese, Cobalt, and Particularly Lithium from NMC-Type Cathode Materials (LiNixMnyCozO2) by Carbo-Thermal Reduction in an Inductively Heated Carbon Bed Reactor
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Standard
in: Metals : open access journal , Jahrgang 2021, Nr. 11, 1844, 17.11.2021.
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Investigation of Potential Recovery Rates of Nickel, Manganese, Cobalt, and Particularly Lithium from NMC-Type Cathode Materials (LiNixMnyCozO2) by Carbo-Thermal Reduction in an Inductively Heated Carbon Bed Reactor
AU - Windisch-Kern, Stefan
AU - Holzer, Alexandra
AU - Wiszniewski, Lukas
AU - Raupenstrauch, Harald
N1 - Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/11/17
Y1 - 2021/11/17
N2 - Within the e-mobility sector, which represents a major driver of the development of the over-all lithium-ion battery market, batteries with nickel-manganese-cobalt (NMC) cathode chemistries are currently gaining ground. This work is specifically dedicated to this NMC battery type and investigates achievable recovery rates of the valuable materials contained when applying an uncon-ventional, pyrometallurgical reactor concept. For this purpose, the currently most prevalent NMC modifications (5-3-2, 6-2-2, and 8-1-1) with carbon addition were analyzed using thermogravimetric analysis and differential scanning calorimetry, and treated in a lab-scale application of the mentioned reactor principle. It was shown that the reactor concept achieves high recovery rates for nickel, cobalt, and manganese of well above 80%. For lithium, which is usually oxidized and slagged, the transfer coefficient into the slag phase was less than 10% in every experimental trial. Instead, it was possible to remove the vast amount of it via a gas phase, which could potentially open up new paths regarding metal recovery from spent lithium-ion batteries.
AB - Within the e-mobility sector, which represents a major driver of the development of the over-all lithium-ion battery market, batteries with nickel-manganese-cobalt (NMC) cathode chemistries are currently gaining ground. This work is specifically dedicated to this NMC battery type and investigates achievable recovery rates of the valuable materials contained when applying an uncon-ventional, pyrometallurgical reactor concept. For this purpose, the currently most prevalent NMC modifications (5-3-2, 6-2-2, and 8-1-1) with carbon addition were analyzed using thermogravimetric analysis and differential scanning calorimetry, and treated in a lab-scale application of the mentioned reactor principle. It was shown that the reactor concept achieves high recovery rates for nickel, cobalt, and manganese of well above 80%. For lithium, which is usually oxidized and slagged, the transfer coefficient into the slag phase was less than 10% in every experimental trial. Instead, it was possible to remove the vast amount of it via a gas phase, which could potentially open up new paths regarding metal recovery from spent lithium-ion batteries.
UR - http://www.scopus.com/inward/record.url?scp=85119087480&partnerID=8YFLogxK
U2 - 10.3390/met11111844
DO - 10.3390/met11111844
M3 - Article
VL - 2021
JO - Metals : open access journal
JF - Metals : open access journal
SN - 2075-4701
IS - 11
M1 - 1844
ER -