Interplay between CO Disproportionation and Oxidation: On the Origin of the CO Reaction Onset on Atomic Layer Deposition-Grown Pt/ZrO2 Model Catalysts

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Autoren

  • Verena Pramhaas
  • Matteo Roiaz
  • Noemi Bosio
  • Manuel Corva
  • Erik Vesselli
  • Henrik Grönbeck
  • Günther Rupprechter

Externe Organisationseinheiten

  • Technische Universität Wien
  • Technische Hochschule Chalmers
  • Universität Triest
  • Consiglio Nazionale delle Ricerche

Abstract

Pt/ZrO2 model catalysts were prepared by atomic layer deposition (ALD) and examined at mbar pressure by operando sum frequency generation (SFG) spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) combined with differentially pumped mass spectrometry (MS). ALD enables creating model systems ranging from Pt nanoparticles to bulk-like thin films. Polarization-dependent SFG of CO adsorption reveals both the adsorption configuration and the Pt particle morphology. By combining experimental data with ab initio density functional theory (DFT) calculations, we show that the CO reaction onset is determined by a delicate balance between CO disproportionation (Boudouard reaction) and oxidation. CO disproportionation occurs on low-coordinated Pt sites, but only at high CO coverages and when the remaining C atom is stabilized by a favorable coordination. Thus, under the current conditions, initial CO oxidation is found to be strongly influenced by the removal of carbon deposits formed through disproportionation mechanisms rather than being determined by the CO and oxygen inherent activity. Accordingly, at variance with the general expectation, rough Pt nanoparticles are seemingly less active than smoother Pt films. The applied approach enables bridging both the "materials and pressure gaps".

Details

OriginalspracheEnglisch
Seiten (von - bis)208-214
Seitenumfang7
FachzeitschriftACS Catalysis
Jahrgang11.2021
Ausgabenummer1
Frühes Online-Datum17 Dez. 2020
DOIs
StatusVeröffentlicht - 1 Jan. 2021
Extern publiziertJa