From abandoned mines to carbon sinks: Assessing the CO2 storage capacity of Austrian low-rank coal deposits
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Standard
in: International journal of coal geology, Jahrgang 286.2024, Nr. 6 May, 104495, 20.03.2024.
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - From abandoned mines to carbon sinks
T2 - Assessing the CO2 storage capacity of Austrian low-rank coal deposits
AU - Safaei Farouji, Majid
AU - Misch, David
AU - Sachsenhofer, Reinhard F.
AU - Rauscher, Max
AU - Kostoglou, Nikolaos
N1 - Publisher Copyright: © 2024 The Authors
PY - 2024/3/20
Y1 - 2024/3/20
N2 - This study represents the first assessment of CO2 storage potential in Austrian coal seams. Coal samples were taken from Fohnsdorf and Leoben abandoned coal mines, with particular emphasis on the Fohnsdorf coal since Leoben coal reserves were largely mined during previous coal production. Several methods were used to compare coal characteristics, including Rock-Eval pyrolysis (RE), organic petrography, and low-pressure N2 and CO2 sorption measurements. Both Fohnsdorf and Leoben coal samples show low sulfur and ash yields, as well as correspondingly high total organic carbon (TOC) contents. The pyrolysis Tmax and vitrinite reflectance values agree with a low coal rank for both sites. According to the N2 adsorption measurements at 77 K, low-lying mire coals from Fohnsdorf show a higher BET-specific surface area (BET-SSA) and BJH pore volume compared to raised-mire coals from Leoben. However, sapropelic shales and high-ash coals from Leoben show the highest BET-SSA and BJH pore volumes of all investigated samples and considerably exceed the N2 adsorption volumes of pure coals from both locations (N2 uptake up to 16 cm3/g; avg. for all samples 5.4 cm3/g). In contrast, the mean adsorbed CO2 uptake measured at 273 K and ∼ 1 bar followed the order of Fohnsdorf low-lying mire coals > Leoben raised-mire coals > Leoben sapropelic coals and shales, ranging at ∼0.8 mmol/g, ∼0.7 mmol/g, and ∼ 0.2 mmol/g, respectively. This shows that BET-SSA and BJH equations did not allow for adequate estimation of CO2 adsorption capacity trends in the investigated sample set. Furthermore, based on the existence of a hysteresis loop between CO2 adsorption and desorption branches for all investigated samples, the occurrence of weak chemisorption phenomena during CO2 adsorption is indicated. This effect helps to increase CO2 uptake and storage safety since the chemisorption process is not fully reversible upon pressure decrease. Ultimately, the theoretical CO2 sequestration potential of the remaining unmined Fohnsdorf coal reserves was estimated at 4.65 million tons, with an additional potential for enhanced coal bed methane production due to the gas-rich nature of Fohnsdorf coals with an estimated 1.2 billion m3 of CH4 in place.
AB - This study represents the first assessment of CO2 storage potential in Austrian coal seams. Coal samples were taken from Fohnsdorf and Leoben abandoned coal mines, with particular emphasis on the Fohnsdorf coal since Leoben coal reserves were largely mined during previous coal production. Several methods were used to compare coal characteristics, including Rock-Eval pyrolysis (RE), organic petrography, and low-pressure N2 and CO2 sorption measurements. Both Fohnsdorf and Leoben coal samples show low sulfur and ash yields, as well as correspondingly high total organic carbon (TOC) contents. The pyrolysis Tmax and vitrinite reflectance values agree with a low coal rank for both sites. According to the N2 adsorption measurements at 77 K, low-lying mire coals from Fohnsdorf show a higher BET-specific surface area (BET-SSA) and BJH pore volume compared to raised-mire coals from Leoben. However, sapropelic shales and high-ash coals from Leoben show the highest BET-SSA and BJH pore volumes of all investigated samples and considerably exceed the N2 adsorption volumes of pure coals from both locations (N2 uptake up to 16 cm3/g; avg. for all samples 5.4 cm3/g). In contrast, the mean adsorbed CO2 uptake measured at 273 K and ∼ 1 bar followed the order of Fohnsdorf low-lying mire coals > Leoben raised-mire coals > Leoben sapropelic coals and shales, ranging at ∼0.8 mmol/g, ∼0.7 mmol/g, and ∼ 0.2 mmol/g, respectively. This shows that BET-SSA and BJH equations did not allow for adequate estimation of CO2 adsorption capacity trends in the investigated sample set. Furthermore, based on the existence of a hysteresis loop between CO2 adsorption and desorption branches for all investigated samples, the occurrence of weak chemisorption phenomena during CO2 adsorption is indicated. This effect helps to increase CO2 uptake and storage safety since the chemisorption process is not fully reversible upon pressure decrease. Ultimately, the theoretical CO2 sequestration potential of the remaining unmined Fohnsdorf coal reserves was estimated at 4.65 million tons, with an additional potential for enhanced coal bed methane production due to the gas-rich nature of Fohnsdorf coals with an estimated 1.2 billion m3 of CH4 in place.
KW - CO adsorption
KW - Coal
KW - Fohnsdorf
KW - Leoben
KW - Nanopores
KW - Nitrogen adsorption
UR - http://www.scopus.com/inward/record.url?scp=85188707630&partnerID=8YFLogxK
U2 - 10.1016/j.coal.2024.104495
DO - 10.1016/j.coal.2024.104495
M3 - Article
AN - SCOPUS:85188707630
VL - 286.2024
JO - International journal of coal geology
JF - International journal of coal geology
SN - 0166-5162
IS - 6 May
M1 - 104495
ER -