Exsolution on perovskite oxides: morphology and anchorage of nanoparticles
Publikationen: Beitrag in Fachzeitschrift › Übersichtsartikel › (peer-reviewed)
Standard
in: Chemical Communications, Jahrgang 59.2023, Nr. 27, 14.03.2023, S. 3948-3956.
Publikationen: Beitrag in Fachzeitschrift › Übersichtsartikel › (peer-reviewed)
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Exsolution on perovskite oxides
T2 - morphology and anchorage of nanoparticles
AU - Ruh, Thomas
AU - Berkovec, Dominic
AU - Schrenk, Florian
AU - Rameshan, Christoph
N1 - Publisher Copyright: © 2023 The Royal Society of Chemistry.
PY - 2023/3/14
Y1 - 2023/3/14
N2 - Perovskites are very promising materials for a wide range of applications (such as catalysis, solid oxide fuel cells…) due to beneficial general properties (e.g. stability at high temperatures) and tunability - doping both A- and B-site cations opens the path to a materials design approach that allows specific properties to be finely tuned towards applications. A major asset of perovskites is the ability to form nanoparticles on the surface under certain conditions in a process called “exsolution”. Exsolution leads to the decoration of the material's surface with finely dispersed nanoparticles (which can be metallic or oxidic - depending on the experimental conditions) made from B-site cations of the perovskite lattice (here, doping comes into play, as B-site doping allows control over the constitution of the nanoparticles). In fact, the ability to undergo exsolution is one of the main reasons that perovskites are currently a hot topic of intensive research in catalysis and related fields. Exsolution on perovskites has been heavily researched in the last couple of years: various potential catalysts have been tested with different reactions, the oxide backbone materials and the exsolved nanoparticles have been investigated with a multitude of different methods, and the effect of different exsolution parameters on the resulting nanoparticles has been studied. Despite all this, to our knowledge no comprehensive effort was made so far to evaluate these studies with respect to the effect that the exsolution conditions have on anchorage and morphology of the nanoparticles. Therefore, this highlight aims to provide an overview of nanoparticles exsolved from oxide-based perovskites with a focus on the conditions leading to nanoparticle exsolution.
AB - Perovskites are very promising materials for a wide range of applications (such as catalysis, solid oxide fuel cells…) due to beneficial general properties (e.g. stability at high temperatures) and tunability - doping both A- and B-site cations opens the path to a materials design approach that allows specific properties to be finely tuned towards applications. A major asset of perovskites is the ability to form nanoparticles on the surface under certain conditions in a process called “exsolution”. Exsolution leads to the decoration of the material's surface with finely dispersed nanoparticles (which can be metallic or oxidic - depending on the experimental conditions) made from B-site cations of the perovskite lattice (here, doping comes into play, as B-site doping allows control over the constitution of the nanoparticles). In fact, the ability to undergo exsolution is one of the main reasons that perovskites are currently a hot topic of intensive research in catalysis and related fields. Exsolution on perovskites has been heavily researched in the last couple of years: various potential catalysts have been tested with different reactions, the oxide backbone materials and the exsolved nanoparticles have been investigated with a multitude of different methods, and the effect of different exsolution parameters on the resulting nanoparticles has been studied. Despite all this, to our knowledge no comprehensive effort was made so far to evaluate these studies with respect to the effect that the exsolution conditions have on anchorage and morphology of the nanoparticles. Therefore, this highlight aims to provide an overview of nanoparticles exsolved from oxide-based perovskites with a focus on the conditions leading to nanoparticle exsolution.
UR - http://www.scopus.com/inward/record.url?scp=85150896154&partnerID=8YFLogxK
U2 - 10.1039/d3cc00456b
DO - 10.1039/d3cc00456b
M3 - Review article
C2 - 36916176
AN - SCOPUS:85150896154
VL - 59.2023
SP - 3948
EP - 3956
JO - Chemical Communications
JF - Chemical Communications
SN - 1359-7345
IS - 27
ER -