Explanation for the linear solid/liquid interface recoil observed during directional solidification of a TRIS-NPG alloy under microgravity conditions
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Autoren
Organisationseinheiten
Externe Organisationseinheiten
- K1-MET GmbH, Leoben
Abstract
During the initial transient stage of a directional alloy solidification experiment, a solid/liquid interface asymptotically recoils from a position that is given by the liquidus temperature to a position given by the solidus temperature. Recent observations onboard the International Space Station revealed that for the organic compound TRIS-NPG, the recoil appears much larger and varies linearly with time. In addition, such conditions were found that the high-temperature non-facetted plastic phase gradually dissolves and, although it seems contradictory to the interpretation of the thermodynamics of the binary system, the low-temperature facetted phase comes into direct contact with the liquid. Both unexpected observations can be understood by assuming that the TRIS-NPG alloy gradually decomposes at the hot side of the furnace. The decomposition products are then transported to the solid/liquid interface by diffusion and the sample motion. The presence of decomposition products changes the binary alloy into a TRIS-NPG-X ternary alloy, with a liquidus temperature that decreases with an increasing amount of decomposed substances.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 127824 |
Seitenumfang | 8 |
Fachzeitschrift | Journal of crystal growth |
Jahrgang | 644.2024 |
Ausgabenummer | 15 October |
DOIs | |
Status | Veröffentlicht - 23 Juli 2024 |