Electrochemical and microstructural characterization of the high-entropy perovskite La0.2Pr0.2Nd0.2Sm0.2Sr0.2CoO3-δ for solid oxide cell air electrodes

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Standard

Electrochemical and microstructural characterization of the high-entropy perovskite La0.2Pr0.2Nd0.2Sm0.2Sr0.2CoO3-δ for solid oxide cell air electrodes. / Pretschuh, Patrick; Egger, Andreas; Brunner, Roland et al.
in: Fuel Cells, Jahrgang 2023, Nr. 6, 27.07.2023, S. 377-386.

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Bibtex - Download

@article{8bda38bc80ee4e80972e40bb8f045fb9,
title = "Electrochemical and microstructural characterization of the high-entropy perovskite La0.2Pr0.2Nd0.2Sm0.2Sr0.2CoO3-δ for solid oxide cell air electrodes",
abstract = "Strontium segregation (coupled to phase decomposition and impurity poisoning) and electrode delamination are two of the most important degradation mechanisms currently limiting the long-term stability of solid oxide fuel cell and electrolysis cell (SOFC and SOEC) air electrodes. The present study aims to demonstrate that air electrodes made of entropy-stabilized multi-component oxides can mitigate these degradation mechanisms while providing excellent cell performance. A SOEC utilizing La0.2Pr0.2Nd0.2Sm0.2Sr0.2CoO3-δ (LPNSSC) as an air electrode delivers −1.56 A/cm2 at 1.2 V at 800°C. This performance exceeds that of a commercial cell with La0.6Sr0.4CoO3-δ (LSC) air electrode, which reaches −1.43 A/cm2. In a long-term electrolysis test, the LPNSSC cell shows stable performance during 700 h, while the LSC cell degrades continuously. Post-mortem analyses by scanning electron microscopy-energy dispersive X-ray spectroscopy indicate complete delamination of the LSC electrode, while LPNSSC shows excellent adhesion. The amount of secondary phases formed (esp. SrSO4) is also much lower in LPNSSC compared to LSC. In conclusion, the high-entropy perovskite LPNSSC is a promising option for air electrodes of solid oxide cells. While LPNSSC can compete with ‒ or even outperform ‒ LSC air electrodes in terms of electrochemical performance, it could be particularly advantageous in terms of long-term stability in SOEC mode.",
author = "Patrick Pretschuh and Andreas Egger and Roland Brunner and Edith Bucher",
note = "Publisher Copyright: {\textcopyright} 2023 The Authors. Fuel Cells published by Wiley-VCH GmbH.",
year = "2023",
month = jul,
day = "27",
doi = "10.1002/fuce.202300036",
language = "English",
volume = "2023",
pages = "377--386",
journal = "Fuel Cells",
issn = "1615-6846",
publisher = "John Wiley & Sons, Gro{\ss}britannien",
number = "6",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Electrochemical and microstructural characterization of the high-entropy perovskite La0.2Pr0.2Nd0.2Sm0.2Sr0.2CoO3-δ for solid oxide cell air electrodes

AU - Pretschuh, Patrick

AU - Egger, Andreas

AU - Brunner, Roland

AU - Bucher, Edith

N1 - Publisher Copyright: © 2023 The Authors. Fuel Cells published by Wiley-VCH GmbH.

PY - 2023/7/27

Y1 - 2023/7/27

N2 - Strontium segregation (coupled to phase decomposition and impurity poisoning) and electrode delamination are two of the most important degradation mechanisms currently limiting the long-term stability of solid oxide fuel cell and electrolysis cell (SOFC and SOEC) air electrodes. The present study aims to demonstrate that air electrodes made of entropy-stabilized multi-component oxides can mitigate these degradation mechanisms while providing excellent cell performance. A SOEC utilizing La0.2Pr0.2Nd0.2Sm0.2Sr0.2CoO3-δ (LPNSSC) as an air electrode delivers −1.56 A/cm2 at 1.2 V at 800°C. This performance exceeds that of a commercial cell with La0.6Sr0.4CoO3-δ (LSC) air electrode, which reaches −1.43 A/cm2. In a long-term electrolysis test, the LPNSSC cell shows stable performance during 700 h, while the LSC cell degrades continuously. Post-mortem analyses by scanning electron microscopy-energy dispersive X-ray spectroscopy indicate complete delamination of the LSC electrode, while LPNSSC shows excellent adhesion. The amount of secondary phases formed (esp. SrSO4) is also much lower in LPNSSC compared to LSC. In conclusion, the high-entropy perovskite LPNSSC is a promising option for air electrodes of solid oxide cells. While LPNSSC can compete with ‒ or even outperform ‒ LSC air electrodes in terms of electrochemical performance, it could be particularly advantageous in terms of long-term stability in SOEC mode.

AB - Strontium segregation (coupled to phase decomposition and impurity poisoning) and electrode delamination are two of the most important degradation mechanisms currently limiting the long-term stability of solid oxide fuel cell and electrolysis cell (SOFC and SOEC) air electrodes. The present study aims to demonstrate that air electrodes made of entropy-stabilized multi-component oxides can mitigate these degradation mechanisms while providing excellent cell performance. A SOEC utilizing La0.2Pr0.2Nd0.2Sm0.2Sr0.2CoO3-δ (LPNSSC) as an air electrode delivers −1.56 A/cm2 at 1.2 V at 800°C. This performance exceeds that of a commercial cell with La0.6Sr0.4CoO3-δ (LSC) air electrode, which reaches −1.43 A/cm2. In a long-term electrolysis test, the LPNSSC cell shows stable performance during 700 h, while the LSC cell degrades continuously. Post-mortem analyses by scanning electron microscopy-energy dispersive X-ray spectroscopy indicate complete delamination of the LSC electrode, while LPNSSC shows excellent adhesion. The amount of secondary phases formed (esp. SrSO4) is also much lower in LPNSSC compared to LSC. In conclusion, the high-entropy perovskite LPNSSC is a promising option for air electrodes of solid oxide cells. While LPNSSC can compete with ‒ or even outperform ‒ LSC air electrodes in terms of electrochemical performance, it could be particularly advantageous in terms of long-term stability in SOEC mode.

UR - http://www.scopus.com/inward/record.url?scp=85165961517&partnerID=8YFLogxK

U2 - 10.1002/fuce.202300036

DO - 10.1002/fuce.202300036

M3 - Article

VL - 2023

SP - 377

EP - 386

JO - Fuel Cells

JF - Fuel Cells

SN - 1615-6846

IS - 6

ER -