Critical Examination of the Representativeness of Austenite Grain Growth Studies Performed In Situ Using HT-LSCM and Application to Determine Growth-inhibiting Mechanisms

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Bibtex - Download

@article{438d3e4181104d07ba2abea7023efeea,
title = "Critical Examination of the Representativeness of Austenite Grain Growth Studies Performed In Situ Using HT-LSCM and Application to Determine Growth-inhibiting Mechanisms",
abstract = "This contribution critically addresses the potential of HT-LSCM experiments for in situ observations of austenite grain growth (AGG). By quantifying AGG for various alloys, the impact of impurity induced solute drag effects (SDE) and second phase precipitation Zener pinning forces (PZ) on AGG can be estimated. Also the grain boundary mobility (GBM) can be determined. The measured arithmetic mean of the time-resolved grain size distributions as a function of temperature and chemical composition is the most important value for quantification. The obtained data is then used to contribute to mathematical models of classical grain growth theory and to allow conclusions on parametrization of SDE and PZ. In this contribution, grain size measurements at the sample surface (in situ and ex situ) are compared with ex situ bulk measurements and experiments on grain growth in the single-phase austenite region (γ-Fe) under isothermal annealing conditions at different temperatures are presented. Grain growth results include high-purity Fe (Fe > 99.98%), binary Fe‑P, Fe‑C, and quaternary Fe-C-Nb‑N systems. For the alloys investigated, it is assumed that grain growth in high-purity Fe occurs without the influence of solute drag or precipitation mechanisms. In Fe‑P, it is shown that grain growth is inhibited by the segregation of impurity atoms at the grain boundaries (GB), which allows conclusions to be drawn about the influence of SDE. In the case of Fe-C-Nb‑N systems, the influence of Nb(C,N) precipitation on grain growth due to Zener pinning forces is presented.",
author = "Maximilian Kern and Bernhard, {Michael Christian} and Peter Presoly and Dominik Brandl and Christian Bernhard",
year = "2024",
month = feb,
day = "9",
doi = "10.1007/s00501-024-01438-8",
language = "English",
volume = "169.2024",
journal = "Berg- und h{\"u}ttenm{\"a}nnische Monatshefte : BHM",
issn = "0005-8912",
publisher = "Springer Wien",
number = "??? Stand: 26. Februar 2024",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Critical Examination of the Representativeness of Austenite Grain Growth Studies Performed In Situ Using HT-LSCM and Application to Determine Growth-inhibiting Mechanisms

AU - Kern, Maximilian

AU - Bernhard, Michael Christian

AU - Presoly, Peter

AU - Brandl, Dominik

AU - Bernhard, Christian

PY - 2024/2/9

Y1 - 2024/2/9

N2 - This contribution critically addresses the potential of HT-LSCM experiments for in situ observations of austenite grain growth (AGG). By quantifying AGG for various alloys, the impact of impurity induced solute drag effects (SDE) and second phase precipitation Zener pinning forces (PZ) on AGG can be estimated. Also the grain boundary mobility (GBM) can be determined. The measured arithmetic mean of the time-resolved grain size distributions as a function of temperature and chemical composition is the most important value for quantification. The obtained data is then used to contribute to mathematical models of classical grain growth theory and to allow conclusions on parametrization of SDE and PZ. In this contribution, grain size measurements at the sample surface (in situ and ex situ) are compared with ex situ bulk measurements and experiments on grain growth in the single-phase austenite region (γ-Fe) under isothermal annealing conditions at different temperatures are presented. Grain growth results include high-purity Fe (Fe > 99.98%), binary Fe‑P, Fe‑C, and quaternary Fe-C-Nb‑N systems. For the alloys investigated, it is assumed that grain growth in high-purity Fe occurs without the influence of solute drag or precipitation mechanisms. In Fe‑P, it is shown that grain growth is inhibited by the segregation of impurity atoms at the grain boundaries (GB), which allows conclusions to be drawn about the influence of SDE. In the case of Fe-C-Nb‑N systems, the influence of Nb(C,N) precipitation on grain growth due to Zener pinning forces is presented.

AB - This contribution critically addresses the potential of HT-LSCM experiments for in situ observations of austenite grain growth (AGG). By quantifying AGG for various alloys, the impact of impurity induced solute drag effects (SDE) and second phase precipitation Zener pinning forces (PZ) on AGG can be estimated. Also the grain boundary mobility (GBM) can be determined. The measured arithmetic mean of the time-resolved grain size distributions as a function of temperature and chemical composition is the most important value for quantification. The obtained data is then used to contribute to mathematical models of classical grain growth theory and to allow conclusions on parametrization of SDE and PZ. In this contribution, grain size measurements at the sample surface (in situ and ex situ) are compared with ex situ bulk measurements and experiments on grain growth in the single-phase austenite region (γ-Fe) under isothermal annealing conditions at different temperatures are presented. Grain growth results include high-purity Fe (Fe > 99.98%), binary Fe‑P, Fe‑C, and quaternary Fe-C-Nb‑N systems. For the alloys investigated, it is assumed that grain growth in high-purity Fe occurs without the influence of solute drag or precipitation mechanisms. In Fe‑P, it is shown that grain growth is inhibited by the segregation of impurity atoms at the grain boundaries (GB), which allows conclusions to be drawn about the influence of SDE. In the case of Fe-C-Nb‑N systems, the influence of Nb(C,N) precipitation on grain growth due to Zener pinning forces is presented.

U2 - 10.1007/s00501-024-01438-8

DO - 10.1007/s00501-024-01438-8

M3 - Article

VL - 169.2024

JO - Berg- und hüttenmännische Monatshefte : BHM

JF - Berg- und hüttenmännische Monatshefte : BHM

SN - 0005-8912

IS - ??? Stand: 26. Februar 2024

ER -