Constraining the stress field and its variability at the BedrettoLab: Elaborated hydraulic fracture trace analysis
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Autoren
Organisationseinheiten
Externe Organisationseinheiten
- University of Science and Technology of China, School of Earth and Space Sciences, Hefei, China
- MeSy Solexperts
- ETH Zürich
Abstract
The measurement of the stress field and its natural heterogeneity is a common challenge in the field of geophysics and underground engineering. This study presents findings from an extensive mini-frac campaign conducted at the Bedretto Underground Laboratory (BedrettoLab) in the Swiss Alps. Six dedicated stress measurement boreholes, spanning 500 m along the Bedretto Tunnel, were utilized to prepare for meso-scale hydraulic stimulation experiments in a granitic rock volume. A detailed analysis of the induced hydraulic fracture trace morphology was carried out using acoustic televiewer logging data, with an interpretation based on the local geological context. The results show that the far field orientation of the maximum horizontal stress (𝑆Hmax) is on average N112°E and the overburden stress can be assumed to be a principal stress direction. However, the en-echelon shape of the observed hydraulic fracture traces suggests that there is a slight inclination of the greatest principal stress away from the vertical stress direction. The mini-frac test
intervals along boreholes inside the enlarged niche of the BedrettoLab indicate a counterclockwise rotated horizontal stress by up to 37° and potentially stronger inclination of the greatest principal stress from the vertical stress direction. The most likely causes of this stress field rotation, along with a considerably larger scatter in stress magnitudes, appear to be the larger laboratory niche dimensions compared to the tunnel and the presence of natural fractures that are preferentially oriented for slip in the far field stress state. Although
the uncertainties and variability of the stress field around the BedrettoLab are not yet fully understood, our results are useful for strategic planning and design of meso-scale stimulation experiments in the rock volume. Furthermore, our detailed analysis procedure contributes to advancing the understanding of mini-frac tests in similar geological settings.
intervals along boreholes inside the enlarged niche of the BedrettoLab indicate a counterclockwise rotated horizontal stress by up to 37° and potentially stronger inclination of the greatest principal stress from the vertical stress direction. The most likely causes of this stress field rotation, along with a considerably larger scatter in stress magnitudes, appear to be the larger laboratory niche dimensions compared to the tunnel and the presence of natural fractures that are preferentially oriented for slip in the far field stress state. Although
the uncertainties and variability of the stress field around the BedrettoLab are not yet fully understood, our results are useful for strategic planning and design of meso-scale stimulation experiments in the rock volume. Furthermore, our detailed analysis procedure contributes to advancing the understanding of mini-frac tests in similar geological settings.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 105739 |
Seitenumfang | 17 |
Fachzeitschrift | International Journal of Rock Mechanics and Mining Sciences |
Jahrgang | 178.2024 |
Ausgabenummer | June |
DOIs | |
Status | Veröffentlicht - 10 Mai 2024 |